The Institute of Environmental Science and Research (ESR) has changed its name to the New Zealand Institute for Public Health and Forensic Science (PHF Science) as of 1 July 2025. The website address is now www.phfscience.nz. Visitors are automatically redirected to the new address. Please check and update any links and bookmarks.
Use our research, insights & resources
Our intelligence hub hosts all our information, from disease surveillance dashboards to environmental risk assessments. Explore and use PHF Science’s research, insights, tools and resources to make a difference for Aotearoa New Zealand.
PHF Science is working to actively co-design with Māori in research, science and innovation to improve Māori economic, social and wellbeing outcomes and impacts.
PHF Science is a New Zealand Government owned research organisation that plays a critical national role in public health and forensics, and is a key contributor to environment and biosecurity outcomes.
Norovirus in shellfish: An overview of post-harvest treatments and their challenges.
Abstract
Filter feeding bivalve molluscan shellfish such as oysters, mussels and clams can readily accumulate norovirus present in growing water contaminated by human faecal material from point and non-point sources. While pre-harvest preventative interventions are preferable, post-harvest interventions such as depuration, relaying and thermal treatment have been used to mitigate the risk of norovirus infection associated with shellfish consumption. However, even with available pre- and post-harvest interventions, norovirus outbreaks associated with shellfish consumption are still reported worldwide. Analyses of faecal indicator bacteria, i.e. total coliforms, Escherichia coli or Enterococci spp. are commonly used to classify shellfish growing waters. Such classifications are used as a pre-harvest intervention, to identify when harvesting should be restricted and/or determine the necessity of post-harvest treatments. Post-harvest depuration treatment does not necessarily remove norovirus from shellfish tissue, and freezing has little or no effect on norovirus infectivity in shellfish. Thermal treatments can inactivate norovirus but they also change the organoleptic characteristics of shellfish which makes them unacceptable to some consumers. High pressure processing is an alternative post-harvest intervention that has potential to inactivate norovirus effectively with a reduction of 2.8–4.0 log10 genome copies at 300–450 MPa. However, a human challenge showed that less than 600 MPa are not sufficient to prevent norovirus infection when people consume artificially-contaminated shellfish. This study critically evaluates the applicability of, and the challenges associated with, these interventions to improve shellfish safety.