This website has changed. We hope you can find what you need easily, but items have moved around. If you have trouble finding what you are looking for please let us know.

Contact us

Visualization of the air ejected from the temporary cavity in brain and tissue simulants during gunshot wounding

Abstract

One hypothesis for the physical mechanism responsible for backspatter during cranial gunshot wounding is that air is ejected by the collapse of the temporary cavity formed around the bullet path. Using bovine and ovine heads and simulant materials, evidence of this ejection was sought by measuring the velocity of the air that was drawn in and ejected from the cavity in front of the wound channel after bullet impact. A laminar flow of fog-laden air was arranged in front of the wound channel and two high speed cameras recording at 30,000 frames/second captured the air motion. All samples were shot with standard 9 mm × 19 mm FMJ ammunition. Different concentrations of ballistic gelatine were used to characterize the effect of elasticity of the material on the velocity of the air. Fresh bovine and ovine heads were shot with the same experimental set up to investigate if there was induction of air into, and ejection of air from the entrance wounds. The results show, for the first time, that the temporary cavity does eject air in gelatine. The velocity of in-drawn air for 3, 5 and 10% concentration of gelatine was 81, 76 and 65 m/s respectively and the velocity of ejected air for 5 and 10% concentration of gelatine were 43 and 72 m/s respectively. The results show that when the concentration of gelatine is increased, the velocity of the air drawn into the cavity decreases and the velocity of the ejected air increases. However, no ejection was observed in 3% gelatine, ovine or bovine heads. Although ejection of air was not observed, ejection of brain from the wound channel was seen. Using the velocity of the ejected brain, the minimum intracranial pressure required to eject the brain tissue was estimated to be 712 kPa and 468 kPa for the sheep and bovine heads respectively.

view journal