This website has changed. We hope you can find what you need easily, but items have moved around. If you have trouble finding what you are looking for please let us know.

Contact us

Tracking effluent discharges in undisturbed stony soil and alluvial gravel aquifer using synthetic DNA tracers

Abstract

With the intensification of human activities, fresh water resources are increasingly being exposed to contamination from effluent disposal to land. Thus, there is a greater need to identify the sources and pathways of water contamination to enable the development of better mitigation strategies. To track discharges of domestic effluent into soil and groundwater, 10 synthetic double-stranded DNA (dsDNA) 3 tracers were developed in this study. Laboratory column experiment and field groundwater and soil lysimeter studies were carried out spiking DNA with oxidation-pond domestic effluent. The selected DNA tracers were compared with a non-reactive bromide (Br) tracer with respect to their relative mass recoveries, speeds of travel and dispersions using the method of temporal moments. In intact stony soil and gravel aquifer media, the dsDNA tracers typically showed earlier breakthrough and less dispersion than the Br tracer, and underwent mass reduction. This suggests that the dsDNA tracers were predominantly transported through the network of larger pores or preferential flow paths. Effluent tracking experiments in soil and groundwater demonstrated that the dsDNA tracerswere readily detectable in effluent-contaminated soil and groundwater using quantitative polymerase chain reaction. DNA tracer spiked in the effluent at quantities of 36 mu g was detected in groundwater 37 mdown-gradient at a concentration 3-orders of magnitude above the detection limit. It is anticipated it could be detected at far greater distances. Our findings suggest that synthetic dsDNA tracers are promising for tracking effluent discharges in soils and groundwater but further studies are needed to investigate DNA-effluent interaction and the impact of subsurface environmental conditions onDNA attenuation.

view journal