Phylogenetic Distribution of Plastic-Degrading Microorganisms
Abstract
The number of plastic-degrading microorganisms reported is rapidly increasing, making it possible to explore the conservation and distribution of presumed plastic-degrading traits across the diverse microbial tree of life. Putative degraders of conventional high-molecular-weight polymers, including polyamide, polystyrene, polyvinylchloride, and polypropylene, are spread widely across bacterial and fungal branches of the tree of life, although evidence for plastic degradation by a majority of these taxa appears limited. In contrast, we found strong degradation evidence for the synthetic polymer polylactic acid (PLA), and the microbial species related to its degradation are phylogenetically conserved among the bacterial family Pseudonocardiaceae. We collated data on genes and enzymes related to the degradation of all types of plastic to identify 16,170 putative plastic degradation orthologs by mining publicly available microbial genomes. The plastic with the largest number of putative orthologs, 10,969, was the natural polymer polyhydroxybutyrate (PHB), followed by the synthetic polymers polyethylene terephthalate (PET) and polycaprolactone (PCL), with 8,233 and 6,809 orthologs, respectively. These orthologous genes were discovered in the genomes of 6,000 microbial species, and most of them are as yet not identified as plastic degraders. Furthermore, all these species belong to 12 different microbial phyla, of which just 7 phyla have reported degraders to date. We have centralized information on reported plastic-degrading microorganisms within an interactive and updatable phylogenetic tree and database to confirm the global and phylogenetic diversity of putative plastic-degrading taxa and provide new insights into the evolution of microbial plastic-degrading capabilities and avenues for future discovery.
view journal