This website has changed. We hope you can find what you need easily, but items have moved around. If you have trouble finding what you are looking for please let us know.

Contact us

Evaluation of pollution swapping phenomena from a woodchip denitrification wall targeting removal of nitrate in a shallow gravel aquifer.


Woodchip denitrification walls offer a potentially useful way for passive in situ remediation of groundwater nitrate pollution, yet because of the low redox state they induce on the subsurface environment there is an inherent risk they can promote pollution-swapping phenomena. We evaluated pollution-swapping phenomena associated with the first two operational years of a woodchip denitrification wall that is being trialled in a fast-flowing shallow gravel aquifer of quartzo-feldspathic mineralogy. Following burial of woodchip below the water table there was immediate export of dissolved organic carbon (DOC), phosphorus and ammonium into the groundwater. Under the low redox state sustained by labile DOC, the wall initially provided 100% nitrate removal at the expense of acute and localised pollution that occurred in the form of a plume of dissolved iron, manganese and arsenic that were mobilised from the aquifer sediments, in conjunction with methane gas emission. Within one year however, the reactivity of the woodchip wall subsided to support a steady state condition in which nitrate reduction was the terminal electron acceptor process with no measurable methane emission. Having initially functioned as a sink for the potent greenhouse gas nitrous oxide (N2O), evidence is that the woodchip wall is now exporting N2O, albeit at rates less than those associated with productive agricultural land.

view journal