Please note a website outage is scheduled for Thursday 11 July from 6-8am. We apologise for any inconvenience.

Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance


DNA sensors have a wide scope of applications in the present and emerging medical and scientific fields, such as medical diagnostics and forensic investigations. However, much research-to-date on DNA sensor development has focused on short target DNA strands as model genes. In this communication we study the effect of the length of oligonucleotide probe and target strands as a significant step towards real world applications for DNA detection. The sensor technology described uses the conducting polymer polypyrrole as both a sensing element and transducer of sensing events – namely the hybridization of complementary target oligonucleotide to probe oligonucleotide. Detection is performed using electrical impedance spectroscopy. Initially sensor development is performed, wherein we demonstrate an improvement in stability and sensitivity as well as show a reduction in non-specific DNA binding for fabricated sensors, through use of a specific dopant and post-growth treatment. Subsequently, we show that longer target DNA strands display increased response, as do sensors containing longer probe DNA strands. It is suggested that these results are a feature of the increase in negative charges associated with the longer DNA strands. The results of this comparative study are aimed to guide future design of analogous sensors.

view journal