This website has changed. We hope you can find what you need easily, but items have moved around. If you have trouble finding what you are looking for please let us know.

Contact us

Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest


Relatively few studies have considered how aboveground invasive consumers influence decomposer communities. We investigated the potential effects of three types of animals on the decomposer subsystem in a floristically simple New Zealand Nothofagus forest. These animals are the native beech honeydew scale insect (Ultracoelostoma spp.) that secretes large amounts of sugar-rich honeydew that washes to the soil, invasive social wasps (Vespula spp.) that remove honeydew and prevent it from reaching the ground, and invasive rodents (the house mouse (Mus musculus) and ship rat (Rattus rattus)) that are predators of litter invertebrates. We performed a 4 years manipulative experiment involving addition of synthetic honeydew to the soil surface at amounts equal to that washed to the soil both in the absence and presence of wasps. All treatments were subjected to both exclusion and non-exclusion of rodents. Full honeydew addition influenced several components of the belowground community (both positively and negatively), and promoted fungi and fungal feeding fauna at the expense of bacteria and bacterial-feeders. The reduced addition of honeydew (representing effects of wasps) reversed some (but not all) effects of full honeydew addition. Rodents also influenced some belowground organisms, often reversing the effects of honeydew addition. The honeydew levels simulating wasp effects and the presence of rodents both greatly promoted humus carbon and nutrient storage relative to all other treatments, highlighting that invaders can alter soil carbon sequestration and nutrient capital. Our study points to invasive animals modifying the effects of a native animal on multiple components of the decomposer subsystem.

view journal