This website has changed. We hope you can find what you need easily, but items have moved around. If you have trouble finding what you are looking for please let us know.

Contact us

A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes


Long-term diversity-disturbance responses of soil bacterial communities to copper were determined from field-soils (Spalding; South Australia) exposed to Cu in doses ranging from 0 through to 4012 mg Cu kg−1 soil. Nearly 6 years after application of Cu, the structure of the total bacterial community showed change over the Cu gradient (PCR-DGGE profiling). 16S rRNA clone libraries, generated from unexposed and exposed (1003 mg Cu added kg−1 soil) treatments, had significantly different taxa composition. In particular, Acidobacteria were abundant in unexposed soil but were nearly absent from the Cu-exposed sample (P<0.05), which was dominated by Firmicute bacteria (P<0.05). Analysis of community profiles of Acidobacteria, Bacillus, Pseudomonas and Sphingomonas showed significant changes in structural composition with increasing soil Cu. The diversity (Simpsons index) of the Acidobacteria community was more sensitive to increasing concentrations of CaCl-extractable soil Cu (CuExt) than other groups, with decline in diversity occurring at 0.13 CuExt mg kg−1 soil. In contrast, diversity in the Bacillus community increased until 10.4 CuExt mg kg−1 soil, showing that this group was 2 orders of magnitude more resistant to Cu than Acidobacteria. Sphingomonas was the most resistant to Cu; however, this group along with Pseudomonas represented only a small percentage of total soil bacteria. Changes in bacterial community structure, but not diversity, were concomitant with a decrease in catabolic function (BioLog). Reduction in function followed a dose-response pattern with CuExt levels (R2=0.86). The EC50 for functional loss was 0.21 CuExt mg kg−1 soil, which coincided with loss of Acidobacteria diversity. The microbial responses were confirmed as being due to Cu and not shifts in soil pH (from use of CuSO4) as parallel Zn-based field plots (ZnSO4) were dissimilar. Changes in the diversity of most bacterial groups with soil Cu followed a unimodal response – i.e. diversity initially increased with Cu addition until a critical value was reached, whereupon it sharply decreased. These responses are indicative of the intermediate-disturbance-hypothesis, a macroecological theory that has not been widely tested in environmental microbial ecosystems.

view journal