Effects of CO Exposure on Heart Attacks

October 2022

In 2021, the World Health Organization (**WHO**) published revised recommendations for ambient air quality (WHO 2021). To support this update WHO published a review paper in 2021 evaluating the best available evidence on the effects of short-term exposure to carbon monoxide (CO) and myocardial infarction (Lee et al. 2021).

Specifically, the research published updated quantified risk ratios for exposure to CO on hospitalisation for myocardial infarction (heart attacks).

Highlights

- Myocardial infarction was associated with exposure to ambient carbon monoxide.
- The overall evidence was assessed to be of moderate certainty.
- Further research in low- and middle-income countries is needed.

(Lee et al. 2021)

Research Findings

Following screening and selection, Lee and fellow researchers systematically reviewed 26 air pollution epidemiology studies of short-term exposure to CO. Mean daily concentrations of CO reported in 21 studies ranged from 0.3 - 4.6 milligrams per cubic metre (mg/m³).

The studies were mainly conducted in the 1980s and 1990s, with a mean duration of 6.4 years (standard deviation 4.0, range 2-15). The studies originated from 14 countries, however, the majority of these were high-income countries.

Lee and fellow researcher's meta-analysis of epidemiological studies developed a new risk ratio, which follows, to represent the quantitative risks posed by short-term exposure to carbon monoxide and myocardial infarction:

Daily CO risk ratio 1.052 (95% Confidence Interval: 1.017, 1.089, n = 26)¹

This means for every 1 mg/m³ increase in daily concentration of CO, hospitalisations due to heart attacks increased by 5.2%, with 95% of the data being between 1.7 - 8.9% across 26 epidemiological studies.

The certainty of evidence was judged to be moderate.

Discussion

The researchers noted the following important observations:

- 24-hour exposure to carbon monoxide correlates with increased risk of hospitalisation for myocardial infarction (heart attack).
- The review identified 10 additional studies evaluating the short-term effects of carbon monoxide on admission to hospital for myocardial infarction or mortality from myocardial infarction. The magnitude of the association was **very similar to a previous meta-analysis** of 20 studies (Mustafić *et al.* 2012).
- There was insufficient stratification to permit subgroup analyses by sex, age, multipollutant studies or conflict of interest.

Conclusions

Lee and fellow researchers concluded that 24-hour exposure to carbon monoxide correlates with increased risk of hospitalisation for myocardial infarction (heart attack).

Overall, the evidence was assessed to be of moderate quality.

WHO Short-Term CO Guidelines

The WHO 2000 air quality guidelines (AQG) for CO were set to "protect non-smoking, middle-aged and elderly population groups with documented or latent coronary artery disease from acute ischaemic heart attacks, and to protect the foetuses of non-smoking pregnant women from untoward hypoxic effects" (WHO 2000). Specifically, a range of time averaged AQG were provided to ensure a maximum carboxyhaemoglobin concentration of 2.5% was not exceeded.

In 2010, WHO updated the AQG for CO to address 15-minute, 1-hour and 24-hour exposures (WHO 2010). The 24-hour average AQG was further updated in 2021 based on a new evaluation of the effects of short-term exposure to CO on hospital admissions for myocardial infarction (Lee *et al.* 2021). Existing guidelines remain valid (WHO 2021).

Time Average	CO Guideline (mg/m³)	No. Permitted Exceedances
24-hour	4	3-4/year
8-hour	10	-
1-hour	35	1/day
30-minutes	60	-
15-minutes	100	1/day

¹ For more information on the study methods and interpreting risk ratios please see the separate fact sheet titled "Health Effects of Air Pollutant Factsheets: Supporting Information". (Wickham *et al.* 2022)

References

- Allred et al., 1989. E.N. Allred, E.R. Bleecker, B.R. Chaitman, *et al.* Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. *N. Engl. J. Med.*, 321 (21) (1989), pp. 1426-1432. doi/full/10.1056/NEJM198911233212102
- Künzli, N., Medina, S., Kaiser, R., Quénel, P., Horak, F. and Studnicka, M. 2001. Assessment of deaths attributable to air pollution: Should we use risk estimates based on time series or on cohort studies?. Am. J. Epidemiol., 153: 1050–1055.
- Lee et al., 2020. Short-term exposure to carbon monoxide and myocardial infarction: A systematic review and metaanalysis. *Env Int*. Vol 143. July 2020. 105901. https://doi.org/10.1016/j.envint.2020.105901
- Lo Iacono et al., 2011. L. Lo Iacono, J. Boczkowski, R. Zini, *et al.*, 2011. A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species. *Free Radic Biol Med*, 50 (11) (2011), pp. 1556-1564, 10.1016/j.freeradbiomed.2011.02.033
- Ministry for the Environment, 2002. Ambient Air Quality Guidelines. 2002 Update. Wellington. New Zealand.
- Mustafić et al., 2012. D. Nuvolone, D. Balzi, M. Chini, *et al.* Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study. *Am. J. Epidemiol.*, 174 (1) (2011), pp. 63-71, 10.1093/aje/kwr046
- New Zealand Government, 2004. Resource Management (National Environmental Standards for Air Quality) Regulations 2004.
- Thom et al., 1997. S.R. Thom, D. Fisher, Y.A. Xu, *et al.* Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. *Am. J. Physiol.*, 276 (3) (1999), pp. H984-H992, 10.1152/ajpheart.1999.276.3.H984
- Wickham L., Cridge B., Nicoll R., Powell J., 2022. *Health Effects of Air Pollutant Factsheets: Supporting Information.* Factsheet prepared by Emission Impossible Ltd and ESR for Ministry of Health. October. [Online: www.esr.cri.nz]
- World Health Organisation, 2000. Air Quality Guidelines for Europe. WHO Regional Office for Europe. Copenhagen. Denmark.
- WHO, 2010. WHO Guidelines for Indoor Air Quality. Selected Pollutants. WHO Regional Office for Europe. Copenhagen. Denmark.
- WHO, 2021. WHO global air quality guidelines. Particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.